Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk.

نویسندگان

  • Enrico Zampese
  • Cristina Fasolato
  • Maulilio J Kipanyula
  • Mario Bortolozzi
  • Tullio Pozzan
  • Paola Pizzo
چکیده

Presenilin mutations are the main cause of familial Alzheimer's disease (FAD). Presenilins also play a key role in Ca(2+) homeostasis, and their FAD-linked mutants affect cellular Ca(2+) handling in several ways. We previously have demonstrated that FAD-linked presenilin 2 (PS2) mutants decrease the Ca(2+) content of the endoplasmic reticulum (ER) by inhibiting sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) activity and increasing ER Ca(2+) leak. Here we focus on the effect of presenilins on mitochondrial Ca(2+) dynamics. By using genetically encoded Ca(2+) indicators specifically targeted to mitochondria (aequorin- and GFP-based probes) in SH-SY5Y cells and primary neuronal cultures, we show that overexpression or down-regulation of PS2, but not of presenilin 1 (PS1), modulates the Ca(2+) shuttling between ER and mitochondria, with its FAD mutants strongly favoring Ca(2+) transfer between the two organelles. This effect is not caused by a direct PS2 action on mitochondrial Ca(2+)-uptake machinery but rather by an increased physical interaction between ER and mitochondria that augments the frequency of Ca(2+) hot spots generated at the cytoplasmic surface of the outer mitochondrial membrane upon stimulation. This PS2 function adds further complexity to the multifaceted nature of presenilins and to their physiological role within the cell. We also discuss the importance of this additional effect of FAD-linked PS2 mutants for the understanding of FAD pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenilin 2 Modulates Endoplasmic Reticulum-Mitochondria Coupling by Tuning the Antagonistic Effect of Mitofusin 2.

Communication between organelles plays key roles in cell biology. In particular, physical and functional coupling of the endoplasmic reticulum (ER) and mitochondria is crucial for regulation of various physiological and pathophysiological processes. Here, we demonstrate that Presenilin 2 (PS2), mutations in which underlie familial Alzheimer's disease (FAD), promotes ER-mitochondria coupling onl...

متن کامل

Upregulated function of mitochondria-associated ER membranes in Alzheimer disease

Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondri...

متن کامل

Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether.

The discovery of the multiple roles of mitochondria-endoplasmic reticulum (ER) juxtaposition in cell biology often relied upon the exploitation of Mitofusin (Mfn) 2 as an ER-mitochondria tether. However, this established Mfn2 function was recently questioned, calling for a critical re-evaluation of Mfn2's role in ER-mitochondria cross-talk. Electron microscopy and fluorescence-based probes of o...

متن کامل

Ca2+ dysregulation in neurons from transgenic mice expressing mutant presenilin 2.

Mutations in amyloid precursor protein (APP), and presenilin-1 and presenilin-2 (PS1 and PS2) have causally been implicated in Familial Alzheimer's Disease (FAD), but the mechanistic link between the mutations and the early onset of neurodegeneration is still debated. Although no consensus has yet been reached, most data suggest that both FAD-linked PS mutants and endogenous PSs are involved in...

متن کامل

Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models.

It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 7  شماره 

صفحات  -

تاریخ انتشار 2011